Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(10): e0007742, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589617

RESUMO

Paracoccidioides spp. are thermodimorphic fungi that cause a neglected tropical disease (paracoccidioidomycosis) that is endemic to Latin America. These fungi inhabit the soil, where they live as saprophytes with no need for a mammalian host to complete their life cycle. Despite this, they developed sophisticated virulence attributes allowing them not only to survive in host tissues but also to cause disease. A hypothesis for selective pressures driving the emergence or maintenance of virulence of soil fungi is their interaction with soil predators such as amoebae and helminths. We evaluated the presence of environmental amoeboid predators in soil from armadillo burrows where Paracoccidioides had been previously detected and tested if the interaction of Paracoccidioides with amoebae selects for fungi with increased virulence. Nematodes, ciliates, and amoebae-all potential predators of fungi-grew in cultures from soil samples. Microscopical observation and ITS sequencing identified the amoebae as Acanthamoeba spp, Allovahlkampfia spelaea, and Vermamoeba vermiformis. These three amoebae efficiently ingested, killed and digested Paracoccidioides spp. yeast cells, as did laboratory adapted axenic Acanthamoeba castellanii. Sequential co-cultivation of Paracoccidioides with A. castellanii selected for phenotypical traits related to the survival of the fungus within a natural predator as well as in murine macrophages and in vivo (Galleria mellonella and mice). These changes in virulence were linked to the accumulation of cell wall alpha-glucans, polysaccharides that mask recognition of fungal molecular patterns by host pattern recognition receptors. Altogether, our results indicate that Paracoccidioides inhabits a complex environment with multiple amoeboid predators that can exert selective pressure to guide the evolution of virulence traits.


Assuntos
Amoeba/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paracoccidioides/fisiologia , Microbiologia do Solo , Acanthamoeba castellanii/fisiologia , Amoeba/citologia , Amoeba/microbiologia , Animais , Tatus , Cilióforos , Técnicas de Cocultura , Modelos Animais de Doenças , Fungos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nematoides , Paracoccidioides/patogenicidade , Paracoccidioidomicose/microbiologia , Fagocitose , Solo , Virulência , Fatores de Virulência/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-30483479

RESUMO

Gti1/Pac2 transcription factors occur exclusively in fungi and their roles vary according to species, including regulating morphological transition and virulence, mating and secondary metabolism. Many of these functions are important for fungal pathogenesis. We therefore hypothesized that one of the two proteins of this family in Cryptococcus neoformans, a major pathogen of humans, would also control virulence-associated cellular processes. Elimination of this protein in C. neoformans results in reduced polysaccharide capsule expression and defective cytokinesis and growth at 37°C. The mutant loses virulence in a mouse model of cryptococcal infection and retains only partial virulence in the Galleria mellonella alternative model at 30°C. We performed RNA-Seq experiments on the mutant and found abolished transcription of genes that, in combination, are known to account for all the observed phenotypes. The protein has been named Required for cytokinesis and virulence 1 (Rcv1).


Assuntos
Criptococose/patologia , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Citocinese , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Lepidópteros , Camundongos , Polissacarídeos/metabolismo , Análise de Sequência de RNA , Temperatura , Fatores de Transcrição/genética , Virulência
3.
Front Microbiol ; 7: 1844, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917162

RESUMO

The incidence of fungal infections has been increasing in the last decades, while the number of available antifungal classes remains the same. The natural and acquired resistance of some fungal species to available therapies, associated with the high toxicity of these drugs on the present scenario and makes an imperative of the search for new, more efficient and less toxic therapeutic choices. Antimicrobial peptides (AMPs) are a potential class of antimicrobial drugs consisting of evolutionarily conserved multifunctional molecules with both microbicidal and immunomodulatory properties being part of the innate immune response of diverse organisms. In this study, we evaluated 11 scorpion-venom derived non-disulfide-bridged peptides against Cryptococcus neoformans and Candida spp., which are important human pathogens. Seven of them, including two novel molecules, showed activity against both genera with minimum inhibitory concentration values ranging from 3.12 to 200 µM and an analogous activity against Candida albicans biofilms. Most of the peptides presented low hemolytic and cytotoxic activity against mammalian cells. Modifications in the primary peptide sequence, as revealed by in silico and circular dichroism analyses of the most promising peptides, underscored the importance of cationicity for their antimicrobial activity as well as the amphipathicity of these molecules and their tendency to form alpha helices. This is the first report of scorpion-derived AMPs against C. neoformans and our results underline the potential of scorpion venom as a source of antimicrobials. Further characterization of their mechanism of action, followed by molecular optimization to decrease their cytotoxicity and increase antimicrobial activity, is needed to fully clarify their real potential as antifungals.

4.
J Immunol ; 194(5): 2345-57, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25646306

RESUMO

Human infection with Cryptococcus neoformans, a common fungal pathogen, follows deposition of yeast spores in the lung alveoli. The subsequent host-pathogen interaction can result in eradication, latency, or extrapulmonary dissemination. Successful control of C. neoformans infection is dependent on host macrophages, but macrophages display little ability to kill C. neoformans in vitro. Recently, we reported that ingestion of C. neoformans by mouse macrophages induces early cell cycle progression followed by mitotic arrest, an event that almost certainly reflects host cell damage. The goal of the present work was to understand macrophage pathways affected by C. neoformans toxicity. Infection of macrophages by C. neoformans was associated with alterations in protein translation rate and activation of several stress pathways, such as hypoxia-inducing factor-1-α, receptor-interacting protein 1, and apoptosis-inducing factor. Concomitantly we observed mitochondrial depolarization in infected macrophages, an observation that was replicated in vivo. We also observed differences in the stress pathways activated, depending on macrophage cell type, consistent with the nonspecific nature of C. neoformans virulence known to infect phylogenetically distant hosts. Our results indicate that C. neoformans infection impairs multiple host cellular functions and undermines the health of these critical phagocytic cells, which can potentially interfere with their ability to clear this fungal pathogen.


Assuntos
Cryptococcus neoformans/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos/imunologia , Mitocôndrias/imunologia , Animais , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/imunologia , Linhagem Celular , Cryptococcus neoformans/imunologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/patologia , Fagocitose , Biossíntese de Proteínas , Transdução de Sinais
5.
Eukaryot Cell ; 12(3): 380-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23125354

RESUMO

The genus Paracoccidioides includes the thermodimorphic species Paracoccidioides brasiliensis and P. lutzii, both of which are etiologic agents of paracoccidioidomycosis, a systemic mycosis that affects humans in Latin America. Despite the common occurrence of a sexual stage among closely related fungi, this has not been observed with Paracoccidioides species, which have thus been considered asexual. Molecular evolutionary studies revealed recombination events within isolated populations of the genus Paracoccidioides, suggesting the possible existence of a sexual cycle. Comparative genomic analysis of all dimorphic fungi and Saccharomyces cerevisiae demonstrated the presence of conserved genes involved in sexual reproduction, including those encoding mating regulators such as MAT, pheromone receptors, pheromone-processing enzymes, and mating signaling regulators. The expression of sex-related genes in the yeast and mycelial phases of both Paracoccidioides species was also detected by real-time PCR, with nearly all of these genes being expressed preferentially in the filamentous form of the pathogens. In addition, the expression of sex-related genes was responsive to the putative presence of pheromone in the supernatants obtained from previous cocultures of strains of two different mating types. In vitro crossing of isolates of different mating types, discriminated by phylogenetic analysis of the α-box (MAT1-1) and the high-mobility-group (HMG) domain (MAT1-2), led to the identification of the formation of young ascocarps with constricted coiled hyphae related to the initial stage of mating. These genomic and morphological analyses strongly support the existence of a sexual cycle in species of the genus Paracoccidioides.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Paracoccidioides/genética , Reprodução Assexuada/genética , Genoma Fúngico , Domínios HMG-Box , Hifas/citologia , Paracoccidioides/citologia , Paracoccidioides/metabolismo , Paracoccidioides/fisiologia , Filogenia , Receptores de Fator de Acasalamento/genética , Receptores de Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência , Atrativos Sexuais/química , Atrativos Sexuais/genética , Atrativos Sexuais/metabolismo , Esporos Fúngicos/citologia , Transcrição Gênica
6.
mBio ; 2(4)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21828219

RESUMO

UNLABELLED: A unique aspect of the interaction of the fungus Cryptococcus neoformans with macrophages is the phenomenon of nonlytic exocytosis, also referred to as "vomocytosis" or phagosome extrusion/expulsion, which involves the escape of fungal cells from the phagocyte with the survival of both cell types. This phenomenon has been observed only in vitro using subjective and time-consuming microscopic techniques. In spite of recent advances in our knowledge about its mechanisms, a major question still remaining is whether this phenomenon also occurs in vivo. In this study, we describe a novel flow cytometric method that resulted in a substantial gain in throughput for studying phagocytosis and nonlytic exocytosis in vitro and used it to explore the occurrence of this phenomenon in a mouse model of infection. Furthermore, we tested the hypothesis that host cell phagosomal pH affected nonlytic exocytosis. The addition of the weak bases ammonium chloride and chloroquine resulted in a significant increase of nonlytic exocytosis events, whereas the vacuolar ATPase inhibitor bafilomycin A1 had the opposite effect. Although all three agents are known to neutralize phagosomal acidity, their disparate effects suggest that phagosomal pH is an important and complex variable in this process. Our experiments established that nonlytic exocytosis occurred in vivo with a frequency that is possibly much higher than that observed in vitro. These results in turn suggest that nonlytic exocytosis has a potential role in the pathogenesis of cryptococcosis. IMPORTANCE: Cryptococcus neoformans causes disease in people with immune deficiencies such as AIDS. Upon infection, C. neoformans cells are ingested by macrophage immune cells, which provide a niche for survival and replication. After ingestion, macrophages can expel the fungi without causing harm to either cell type, a process named nonlytic exocytosis. To dissect this phenomenon, we evaluated its dependence on the pH inside the macrophage and addressed its occurrence during infection of mice. We developed new techniques using flow cytometry to measure C. neoformans internalization by and nonlytic exocytosis from macrophages. Neutralizing the phagosome acidity changed the rate of nonlytic exocytosis: activity increased with the weak bases chloroquine and ammonium chloride, whereas the vacuolar ATPase inhibitor bafilomycin A1 caused it to decrease. Experiments in mice suggested that nonlytic exocytosis occurred during infection with C. neoformans. These results shed new light on the interaction between C. neoformans and host macrophages.


Assuntos
Cryptococcus neoformans/patogenicidade , Macrófagos/microbiologia , Animais , Exocitose , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Fagossomos/microbiologia
7.
Fungal Genet Biol ; 48(10): 947-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21708278

RESUMO

Thermodimorphic fungi include most causative agents of systemic mycoses, but the molecular mechanisms that underlie their defining trait, i.e. the ability to shift between mould and yeast on temperature change alone, remain poorly understood. We hypothesised that the heat shock factor (Hsf), a protein that evolved to sense thermal stimuli quickly, might play a role in this process in addition to the known regulator Drk1 and the Ryp proteins. To test this hypothesis, we characterised the Hsf from the thermodimorph Paracoccidioides lutzii (formerly Paracoccidioides brasiliensis isolate 01). We show in the present work that PlHsf possesses regulatory domains that are exclusive of the Eurotiomycetidae family, suggesting evolutionary specialisation; that it can successfully rescue the otherwise lethal loss of the native protein of Saccharomyces cerevisiae; and that its DNA-binding domain is able to recognise regulatory elements from the promoters of both Drk1 and Ryp1. An in silico screening of all 1 kb sequences upstream of P. lutzii ORFs revealed that 7% of them possess a heat shock element. This is the first description of a heat shock factor in a thermodimorphic fungus.


Assuntos
Proteínas de Choque Térmico/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Sequência de Bases , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Evolução Molecular , Proteínas de Choque Térmico/classificação , Humanos , Dados de Sequência Molecular , Paracoccidioides/fisiologia , Filogenia , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...